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Laboratory who computed the three-dimensional
Fourier syntheses and structure factors on ‘Deuce’,
the N.P.L. electronic computer.
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A Unified Program for Phase Determination, Type 1P

By J. KArRLE AnD H. HaupTMAN
U.S. Naval Research Laboratory, Washington 25, D.C., U.S. 4.

(Received 7 September 1958)

The new probability approach, in which the erystal structure is fixed and the Miller indices range
uniformly but not independently over the integers, has been developed to yield formulas with
universal application to all the space groups. The formulation is general and includes with equivalent
rigor both the unequal and equal atom cases. If a requirement of rational independence of atomic
coordinates is fulfilled, the formulas have exact validity. On the other hand, the formulas should still
be useful even if the condition of rational independence is only partially fulfilled. In the application
to a particular space group, use is made of the space group symmetries to obtain relationships among
the structure factors, by means of which the general formula is suitably specialized.

The present paper is concerned with the space groups comprising type 1P. A detailed procedure
for phase determination in this type is described.

1. Introduction

The concept of the joint probability distribution of
several structure factors, obtained by treating the
atomic coordinates as random variables, was intro-
duced in our Monograph I (Hauptman & Karle, 1953)
for the purpose of determining phase directly from the
observed X.ray intensities. Independently, Kitaigo-
rodsky (1954), derived the joint probability distribu-
tion for three structure factors which constituted a
study of the Sayre relation (1952) from the probability
point of view. The results obtained from these joint
probability distributions were confirmed by Bertaut
(1955) and Klug (1958) who employed alternative
manipulative techniques which were however mathe-
matically equivalent to the formulation in Monograph
I (1953).* It is to be emphasized that all these distribu-

* In his paper, Klug (1958) summarizes the theory and
attempts to evaluate the status of probability methods based
on atomic coordinates as random variables. Klug reiterates
limjtations stated by others in the past and offers, as new
evidence, measures of statistical significance derived from the

tions were obtained on the basis that h is fixed and
the atomic coordinates range uniformly and indepen-
dently throughout the asymmetric unit. This is in
marked contrast to our more recent work (1958)
which treats the crystal structure as fixed and permits
the indices to range uniformly, but not independently,
throughout reciprocal space. In this way, considerably
improved formulas have been obtained.

variances of individual contributors to phase determining
formulas. However in a previous paper by us (1956), of which
Klug is apparently unaware, measures of statistical significance
based on the appropriate variances had already been derived
and their application was discussed.

The method of Monograph I utilizes the unusually large
E values and their interactions in several phase determining
formulas to build an internally consistent set of signs. Thus
it should be clear that more is required in a theoretical evalua-
tion than a knowledge of the variance of single terms in
individual formulas and the number and quality of the data.
Quite fortunately, phase determining theories can be readily
confronted by experiment and it is our opinion that the final
judgment regarding the applicability of a method is most
propitiously made in the laboratory.
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The joint probability distributions, based on the
atomic coordinates as random variables, lead to for-
mulas having certain limitations. In general, they have
probable, rather than exact, validity. In addition,
although formulas for all the centrosymmetric space
groups are readily obtained, they often assume dif-
ferent forms for the various space groups. Hence it is
difficult to adapt the procedure for use with automatic
computing machinery. A major defect, however, of
these probability distributions is that, in general, they
do not lead to phase determining formulas in the non-
centrosymmetric space groups.

In contrast to the procedures described in Mono-
graph I (1953), it would appear that an ideal program
for phase determination should embody the following
criteria: (@) A unified program valid not only for all
the space groups, non-centrosymmetric as well as
centrosymmetric, but also readily adapted to modern
computing techniques. (b) A uniform treatment re-
gardless of whether the crystal contains atoms of the
same or different atomic numbers. (¢) Explicit for-
mulas having exact validity.

It was with the intention to fulfill more nearly the
above criteria that we derived improved formulas for
the case of equal atoms in space groups P1 and Pl
by algebraic methods (1957). The algebraic methods
lead to essentially the same formulas for all the space
groups. By means of an analysis related to the super-
position of Patterson maps, Vaughan (1958) indepen-
dently derived asymptotic formulas which are ap-
proximately equivalent to the algebraically exact ones
for large unit cells.

The results obtained by algebraic methods were
soon superseded by us (1958) by means of a new
development of the concept of the joint probability
distribution. This consisted in the application of the
general formulation of Monograph I (1953) to obtain
joint probability distributions based on the assump-
tion that the crystal structure is fixed and the re-
ciprocal vectors are randomly but not independently
distributed variables. The earlier distributions used in
Monograph I (1953), lead, in general, to formulas
having probable validity, whereas the new probability
approach leads to formulas having exact validity in
the sense of extremely rapid convergence of an infinite
series. In fact, the algebraic formulas are special cases
of those obtained from the latest probability ap-
proach.

It is our aim to present the details of a routine
procedure for phase determination in all the space
groups, utilizing the latest formulas. In this connec-
tion, it is interesting to note to what extent these
formulas fulfill the criteria listed above. Criteria (a)
and (b) concerning a uniform program for treating all
the space groups, regardless of the chemical content,
are completely satisfied. So far as criterion (c) is
concerned, it is also satisfied subject to the require-
ment that the atomic coordinates satisfy a condition
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of rational independence (Hauptman & Karle, 1957).*
Naturally, in practical application, the accuracy of the
calculations is affected by the number and quality of
the data.

Whereas the same type of computation serves
uniformly for all the space groups, the interpretation
of the results is space group dependent. In making
this interpretation, the theory of structure semin-
variants (Monograph I, 1953 and Hauptman & Karle,
1959) will be seen to play a central role in that they
identify the linear combinations of the phases which
are directly determined by the observed intensities.
The interpretation is completed by making use of
relationships among the structure factors which are
characteristic of the space group and the chosen func-
tional form of the structure factor.

The formulas for phase determination to be pro-
posed have been proven in detail by us (1958) only
for space groups P1 and P1 for the equal atom case.
We have since extended the results to include all the
space groups (non-centrosymmetric as well as centro-
symmetric) and have generalized them to include the
case of unequal atoms. Since the derivation of these
extensions follows the same lines as that previously
given by us (1958) and is extremely tedious, we omit
the proofs for the present. It is found that the formulas
always yield the phases and magnitudes for what may
be called the ‘squared structure’, i.e. the structure
isomorphous to the structure of interest with the
weights of the atomic scattering factors proportional
to the squares of the weights of those of the original
structure. Thus, one obtains directly the squared
structure from which the true structure may be in-
ferred. Clearly, the squared structure and the true
structure coincide for the case of equal atoms.

2. Notation

We define the ‘quasi-normalized structure factor’ ey
by means off

1 .
en = —33 2 J[mexp 2aih.r)), (2-1)
O, j=1

en = |enl xp (i@n) (2-2)
where N is the number of atoms in the unit cell,
fm is the atomic scattering factor of the jth atom,
r; is the position vector of the jth atom and

N
On = ,Z;f?h : (2-3)
f=

The quasi-normalized structure factor, &, is to be

* For a discussion of rational dependence and its effect
on phase determining formulas see ‘Rational Dependence and
the Denormalization of Structure Factors for Phase Deter-
mination’ by H.Hauptman and J.Karle, Acta Cryst. (to
be published).

+ The symbol ¢ should be replaced by the capital letter
& throughout the text.
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distinguished from the normalized structure factor, £
(Karle & Hauptman, 1956, equation (3-12)), although
for general reflections the two coincide. The magni-
tudes of the g, are assumed to be known from ex-
periment while their phases ¢, coincide with those of
the corresponding structure factors Fy,. Whereas, the
normalized structure factors, E, were well adapted to
the earlier probability methods (Monograph I, 1953),
it will be seen that the quasi-normalized structure
factors ¢ are better adapted to the newer methods.

The quasi-normalized structure factor e, for the
squared structure (cf. § 1) is given by

I3 ' - r l Av ) .
&n = |en| exp (igp) = v .Z;J‘Ih exp (Zmih.r;), (2-4)
4 =
where @y, is the phase of the structure factor e,. For
the fourth power structure, we have

rrr . rre l 1V1 g .
= [én | eXp (igp ) = T 2 finexp (2ih.r)), (2:5)
8 j=1
where ¢y, is the phase of the structure factor e,
We define now some quantities which occur in the
phase determining formulas:

pp = lexlx (2:6)
j'pl:l = |8h|‘uh~1up H (2.7)
l_l\\
M, = /,[_8_‘5‘._ , 2.8
“ \log lexl/x (=-8)
and
|3h|l
A 2.
" g T =)

where the expression (|e|'—1)/log |¢| is to be replaced

by ¢t when |¢| = 1. Finally Cy(¢) is defined by
! no(e-+1)/2 fC+l
Oll(t) = (ng.\oﬂi 2(' 'U/'F(--é ) dx (210)

and is given in Table 1, where the entries, calculated
by numerical integration, are in error by not more
than two units in the third significant figure. The
symbol I' in (2:10) represents the Gamma function.

Table 1

The values of

1
Calt) = { anzwronr (25 4

for various values of ¢ and n

¢ n =90 n=1 n =2 n=3
0 0-000 0-000 0-000 0-000
1 0-847 0-408 0-268 0-200
2 1-72 1-74 2-36 3-59
3 2-98 4-92 10:55 24-93
4 5-17 12-73 38:50 125-3

5 9-61 32-99 131-3 552-1

6 19-6 88-6 443 2296

A UNIFIED PROGRAM FOR PHASE DETERMINATION, TYPE 1P

3. Phase determining formulas

3-1. Basic formulas

Ba 0- 81;2 = 1+ - 47!0% o
’ 2(P+q+2)/2pqp (p—i—l )p(?ﬂ) o4
2 2
<ll'klf1(h+k)>k+R2, o- (31:1)
By 6% €hy1€hyhy +hy ‘
G
+1 q+1 71
2(,,+q+H 3)/2 p ) (777> ( ) S
P q;r( F\5 )

12 <lpqu(h1+ k)lr(h1+ h2+k)>k

Us e T . rer
“2 3/1 p (€nyny +Eny8hy + Ehy1hyEhyihy) T Ba 0 -
4

(3-1-2)
3-2. Integrated formulas
5 20'z ’ 9
I, o0 &n =1+ s, - Apdipixpx+ Rz (3:2°1)
o}
L30% &ny€nghyin, = Cii(t)aﬁlz AncAuny 110 Ainy 4 np 110k
1/2
5 Os Oy rorr Y , ter ’
-2 0'3/2 + ? (shlshl +8h28h2 +8h1+h28h1+h2)+R3,0 .
4 4

(3-2-2)

In these formulas, p, ¢, r and ¢ are restricted to be
positive. Ordinarily they are given values in the range
2-4. A further discussion of this matter is found in § 5.

The remainder terms are given in the appendix
§ 6. Equation (3-1-1) or (3-2-1) serves to determine
the magnitudes of the structure factors |ey| corre-
sponding to the squared structure. By means of equa-
tion (3-1-2) or (3-2-2), the phases of these structure
factors g, may be determined. In the next section we
describe in detail how these equations are to be used
for the various space groups included in type 1P, the
conventionally primitive space groups in the triclinic,
monoclinic and orthorhombic systems (Table 1, p. 14,
Monograph I, 1953).

It should be clear that although the emphasis in
this paper is on a unified program for phase determina-
tion, several of the simpler phase determining formulas
which have already appeared in the literature may
serve to supplement the present method.

4. Phase determining procedure

It is assumed that the |ey| have been calculated from
the observed intensities. From these, the |g| are
obtained from (3-1-1) or (3-2:1). In fact the |ey| so
computed may be made to cover a range of reflections
extending beyond that of the original set of observa-
tions. We are here concerned only with the larger
len| and it is the phases of these whose values are to
be determined.

In the application of (3-1-2) or (3-2-2), the values
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of some |&,’| may be required. These may be obtained
from (3 -1:1) or (3-2-1) in which ¢ is replaced by &
and ¢ by &"'.

Although the same phase determining formulas
(3-1-2) or (3-2-2) are used for all the space groups,
full use is made of the advantages accruing from the
space group symmetries. This arises from the fact that
special choices of the indices h; and h,, peculiar to
the space group, permit the calculation of special
phases. The choices of indices are based upon relations
among the structure factors which depend upon the
particular space group and, in general, on the choice
of functional form for the structure factor. Space
groups of type 1P, have, of course, only one functional
form for the structure factor (Monograph I, 1953).
In the phase determining procedures to follow, it will
be seen that the first steps concern the application of
(3:1-2) or (3-2-2) with choices of indices which take
advantage of the space group symmetry. The final
step is in the form of a general application which is
the same for all the space groups.

The specification of the origin is carried out in
conformance with the seminvariant theory developed
in Monograph I (1953). Origin specification in all space
groups of a given type is the same. Thus, the method
of origin spemﬁcatlon for space group P1 serves as a
model for the remaining ones of type 1P.

4-1. Triclinic system

In the triclinic system we are concerned with space
group PI1. The only special choice for h; and h, arises
for the case that h, = h,. Since equations (3-1-2) and
(3-2:2) then give the values of &) &, in practice
only those values of h, are chosen which give the
largest values for |8h182h1| In this way the phases of
some of the largest ¢, may be found. It is conceivable
that in an unfavorable case no large values are ob-
tained for |e;2esp,|. In this case we would omit this
special calculation and go on to the next step.

For the purpose of specifying the origin, a linearly
semi-independent triple of phases, ¢n;, @ =1,2,3,
having large corresponding |ep,| is chosen. The values
of these gy, are then specified a,rbltrauly (i.e. 0 or m),
thus fixing the origin. Systematic use of equation
(3:1-2) or (3-2-2) then permits the determination of
the phases gy, of the remaining ep; of interest, i.e.
the larger ones. Of course, as the calculation proceeds,
use is made of previously determined or specified
phases. Examination shows that contained within this
procedure is the possibility of a great many different
ways for determining the same phase. This property
may be expressed in terms of an identity involving
the phases, as previously described (Hauptman &
Karle, 1958).

4-2. Monoclinic system

There are two special choices of h, and h, charac-
teristic of the space groups in the monoclinic system,
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in addition to h; = h, which is valid for P1. These
are shown in the first two rows of Table 2. By means

Table 2

The coefficients of %y given by the left sides of (3-1-2) or

(3-2-2) for selected values of h; and h, (shown in the first

two rows), and for each of the four primitive centrosymmetric

space groups of the monoclinic system. From these, ef, may
be found, where h = h;+h,

h, hkl Tkl

h, Rkl Rkl
h=h+h,  02k0 21021
P2/m +1 +1
P2,/m (— Dk (=1)*
P2jc (=1} (=1)
P2,/e (=Dktt (1)t

of the first of these, h; = (A, &, 1) and h, = (R, Ic,—l),
equation (3-1-2) or (3:2-2) yields the value of &,360210
multiplied by the numerical coefficient given in the
second column of Table 2. In this way the value of
the phase @gg;q is determined. Since % and I may be
chosen arbitrarily, @0 may possibly be determined
in many ways. Again we note that the computations
are performed only for the larger values of | eyl

The second relationship h, = (, k,1) and h, =
(h, k, 1), leads to the value of the phase @2, by means
of the numbers listed in the third column of Table 2
and (3-1:2) or (3-2-2).

The numbers listed in columns two and three of
Table 2 arise from relationships among the structure
factors which are characteristic of the particular space
group. For example, in space group P2/m, &, =
& = €31, Whereas in space group P2;/m, &, =
(=1)*&55 = (—1)¥g;3. Thus the substitution of h; and
h, of Table 2 into (3-1-2) or (3:2:2) yields, for the left
sides, eyien times the coefficients listed in columns
two and three.

We proceed by specifying the origin and determining
the remaining phases of interest in the same way as
for P1.

4-3. Orthorhombic system

The special choices of h, and h, characteristic of
the space groups in the orthorhomblc system, in
addition to h; = h, which is valid for P1, are shown
in the first two rows of Table 3. By means of these and
(3 -1-2) or (3-2- 2) the values of many of the phases
9921100, ®o2k0s 990()91, ‘Pz/nzz 0 Pai02 a0d (Puzk » associated
with large |ep| may be found. These choices of h; and
h, arise, as before, as a consequence of the special
relationships among the structure factors in the
various space groups, e.g.in P, g0 = (—1)e;; =
(=) "ep = (= 1) e = (=1)"*ey; = (—1) e
= (—1)**'ef,,. Again, the substitution of h; and h, of
Table 3 into (3-1-2) or (3-2-2) yields, for the left sides,
erién times the coefficients listed in the appropriate
columns of Table 3.
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Table 3

The coefficients of ehzl 81’1 given by the left sides of (3:1-2) or (3-2-2) for selected values of h; and h, (shown in the first two rows),
and for each of the sixteen primitive centrosymmetric space groups of the orthorhombic system. From these, sl'l may be found,

where h = h;4-h,
h, hkl hkl hkl hkl hkl Lkl
h, Rkl hki Rkl Rkl Rkl Rkl
h =h,+h, 2100 0240 002! 2h2K0 2r021 02k21

Pmmm +1 1 +1 +1 + 1 +1
Pnnn (—1)k+t (—1)tth (—1)r+k (— 1)tk (—1)+h (—1)k+l
Peem (—1)¢ (—1)t +1 +1 (—1) (—1)¢
Pban (=¥ (—1)2 (— 1)tk (= 1)r+k (— 12 (—1)k
Pmma (—1)~ +1 (—1)» (—1)r +1 (—1)~
Pnna (—1 )lc+l (—1)ht+k+l (=1~ (—1)k (— 1)ht+k+l (—1)k+l
Pmna +1 (—=1)i+n (—1)i+k (—1)t+n (—1)i+n +1
Pcca (_1)l+h (— 1) (—1)» (—1)2 (—1) (—=1)+k
Pbam (—1)htk (—1)h+E +1 +1 (—1)r+k (—1)r+k
Pecen (—1)tth (—1)k+l (—1)r+k (—1)r+E (— 1)kl (—1)tth
Pbem (—1)¥ (—1E+ (=1 (-1 (— 1)+t (— D)
Pnnm (—1)htk+l (—1)ltk+l +1 +1 (—1)h+k+l (—1)e+k+l
Pmmn (_1)h (—1)« (—1)htk (— 1)tk (—1)* (=1~
Pben (—1)rtk (—1)¢ (— 1)rtk+l (— 1)htk+l (—1) (—1)htk
Pbca (— 1)tk (—1)k+l (—1)ith (—1)i+h (— 1)+l (— 1)tk
Prina (_])h+lc11 (— 1) (—1)ith (— 1)tk (—1)* (—1)htk+l

The procedure is completed by specifying the origin
and determining the remaining phases of interest in
the same way as for P1.

5. Concluding remarks

The computation of the averages in (3-1:1), (3-1:2),
(3-2:1) and (3-2:2) on an IBM 704 has been pro-
grammed by Mr Peter O’Hara of the National Bureau
of Standards. Thus, these computations are readily
feasible with modern computing facilities.

Further experience in the application of the phase
determining formulas will indicate what are the best
values of p, ¢, 7 or ¢ to use. In effect, there are two
competing influences affecting the accuracy of the
calculation. As p, ¢, r or ¢ increase the variances of
the averages increase and, in addition, the inaccuracies
inherent in the experimental data are exaggerated.
On the other hand, in compensation for this, the co-
efficients which multiply these averages are found to
decrease with increasing p, ¢, or £. On the basis of
our limited experience, values of p, g, 7 or ¢ in the
range of 2 to 4 appear to be most suitable. We prefer

to use the integrated formulas (3-2:1) and (3-2-2),
especially since the correction terms listed in § 6 are
generally quite small.

A few words are in order concerning space group
extinctions. If an unlimited set of data were available,
there would be no problem concerning the inclusion,
in the computations of the averages, of those &, which
are zero because of space group extinctions, since the
average would not thereby be altered. However, with
limited data, this question assumes some significance
and is related to the fact that certain of the one and

two dimensional reflections assume exaggerated im-
portance when using the ¢ values instead of the E.
In our opinion, coupled with the use of the ¢ in
preference to the E, the &, which are zero because of
space group extinction should be included in the
calculation of the averages. Of course, accidental zeros
are of necessity included in the computations.

As a result of the calculations, the values of the
larger |ep| and the corresponding phases gy, are found.
In view of our discussion in a previous paper (Karle,
Hauptman, Karle & Wing, 1958), of the use of ¢
maps, we recommend that the next step be the cal-
culation of an ¢ map in which it is assumed that
®@n = @n. For centrosymmetric structures and for
large |ep| and |ey|, this latter assumption will rarely,
if ever, be violated. An ¢’ map, giving the squared
structure, may be helpful in interpreting the & map
since it facilitates the identification of different kinds
of atoms. It should be noted in passing that a map
computed with |ey|2 may also prove to be a useful
aid since it exaggerates the Patterson peaks arising
from the hcaviest atoms.

6. Appendix

The correction terms for the formulas listed in § 3
are given here. With the possible exception of the first
term of (6:1), (6-2), (6-5) and (6-6), and when h; = h,,
the first terms of (6-3) and (6-7), these corrections are
quite small. They all decrease as N increases. Never-
theless these terms are included here for the sake of
completeness, and, in any given case, the investigator
can evaluate their effect in practical application.
We define:
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o= T e = 2 (g
3;(“7% (100—42p—42q + 9pq -+ 4p? -+ 4¢2)
8 L (82— 14p—14g-+4pg+p2+¢2) e’
01/2

8 r e
+ —5 (P+g—4)ene
0_20_1/2 (p q ) h<h

gy , Oy
- —2)(g—2)est —2)(¢—2
120%(20 )(g—2)en +320§ (p—2)(¢—2)+
(6-1)
1/2
G rer:
zR(z(z)o == (€an00F €020+ €02t )
Oy
0,1/2
- 1/2(p+q 4)811811
o .
- —% (P—2)(p—4)+(g—2)(g—4)) e
40,
204
+q9—4
+ o 64(10 q—4)
* 1602 4 (p—2)(g—2)+2(p—2)(p—4)
+2(q—2)(¢g—4)+- .., (6-2)
o 8, . P ,
1R:(s,)0 =325, (&hy &n1+2np T Eng E2hy +hy T Eny+hy Ehy—hy)
4
1/7
((p+q 4) &g+ (g-+7—4) eny
+(P+’"—4)8h1+h2)
03;/2 )
~ Zo. (q— 2)8h13h2+(p 2)ex Enthy
2
+ (r—2)ereniin, t1(@+9+r—6)+..., (6:3)
and
o oi? . 0 .
2R1(§,)0 = —_a'((7—2)81;1—{_(p—2)8h2+(q_2)8h1+h2)
2
o
T —— &n, (Ehyt2ng, by, 1 5/11 k12ks, z,+8hl, k1, h2l)
4
é/2 ’ e
=~ Eno(Eanina, ko g7 Ehe, 2hrier 1 s ke, 21412)
4
a3?
—- 8h1+h2(8h1 he, k1t+ke, l1-He
gy
€yt hy, ki—kn, nrln T Ehy i, by ke, ii—tg) F oo+ 5 (6°4)

Next we define (where Ca(t)) is replaced by Cp:

AC 12

1/2 20.
Ry =T g =% (90, ¢
o 204 ? 01 00y 2)
g
- 556% (10003 —84C,C,+90%+8C,C;)
-1-402 9(160‘ 1401024-20;—%-0103)81;2
102
203/? ,
—_ = (20,-C L
010'2 i/Z( ! 2)8h£h
- 1202 2(2(;' —C,)? &gt 3202 5 (20, —C,)?
+..., (6-5)
o ..
Rz o = ——— (€anov+ Eozk0 €02t )
0y
4:0'8 rorrs
+ = Co 1/2 (26 Cz)ehsh
10
4¢
- 8C, —60,+03) e — ~——— (2C,—C,
201 ( ) h 0102 4( 2)
0y
+ ——— ((2C0,-C,)?+4C,(8C,—6C,+C
160%02(( 1 2)?+4C,(8C, 2t 3))
+..., (6:6)
a3l?
Ry = 2_' (£ Ehy + 2y €y E2hy T Ehy +hy Ehy—hy)
154}
(2C,-0C,)
16C, 0, ?
0.1/2
— (20 0)(811 +Eh -r8h _‘_h)
201 . 1 2 1 2
0'4/2
+ — 40 (20 02)(8h18h2+8h18h1—rh2
+3h28h1+h2+ z;)-i- ey (67)
1 04/2 2 2 12
2R§;,)0 80, p (201_02)(8h1+8h2+8h1+h2)
102
1/2
08 ’ rre rre
- -;: £h1(8h1+2h2, k1, 1 + 8/!1, k1-+2ks, 11 + 6111, Ir1, 11+212)
Gg/) ’ rre 154
- Eng(E2nythg, ko, 2T 8/12, 2y +ke, la T Ehy, ko, 201-+l3)
4
gyl e
T 8h1+h2(5hl—hz, K1tk l1+1g
4
+El/z/1:p-hz, k1—kg, 11+lz"'8h1+112, k1+ke, l1—12)+ . (6:8)

For the conventiona,lly primitive space groups of the
triclinic and monoclinic systems,

RDy = BPy+ 1=2,3; j=0,1. (69)
For the conventionally primitive space groups of the
orthorhombic system,
R, = ROyt Ryt

i=2,3; j=0,1. (610)
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The remainder terms in the basic formulas arc
especially simple for the special case, p = ¢ = r =2.
For this case, the formulas reduce to those obtainable
by the algebraic methods proposed by us (1957).
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The problem of the distribution of intensity in the re-
sultant obtained by compounding n vibrations of equal
amplitude, but of random phase, was considered by
Lord Rayleigh (1880) (see also Ramachandran, 1943).
He considered two cases—one in which the phases are
assumed to have only the values 0 or n, and the other,
the more general case, in which the phases are arbitrary.
It will be readily recognized that these two correspond
to the problem of calculating the distribution of X-ray
intensities for a centrosymmetric and a non-centro-
symmetric crystal structure, in which all the atoms are
alike. The formulae obtained by Lord Rayleigh may be
stated in the following form:

~P(2)dz = exp (—2)dz (1)

cP(z)dz = exp (—z/2)dz (2)

(272)%
where z = I){(I) and P(z)dz represents the probability
that the fraction I/{(I) occurs between z and z+dz. The
subscripts N and C refer to non-centrosymmetric and
centrosymmetric structures.

These formulae have also been derived by Wilson
(1949) and on their basis Howells, Phillips & Rogers
(1950) have suggested a test for distinguishing between
centrosymmetric and non-centrosymmetric structures.
However, they have used the fraction

2
N@) =\ P (3)

Yo
for this purpose. The N (z) curves, as is characteristic of
all cumulative distribution functions, start at the origin
and are more or less similar in their genecral shape for
both types of structures. Consequently a critical distinc-

tion between the two is not always possible and, although
success has been reported in various cascs using this
test, it has led to negative results (Whittaker, 1953;
Eriks & McGillavry, 1954; Paton & MacDonald, 1957)
and even false results in a few cases (e.g., see Robertson
& Shearer, 1956; Robertson, Shearer, Sim & Watson,
1958).

However, if we modify the original probability distri-

10}

Py

0 04 08 1-2 16 2:0
Yy

Fig. 1. Theoretical curves of P(y) against y for centro-
symmetric (C) and non-centrosymmetric (N) distributions.

bution functions such that the argument is y = |z and
not z, then the following formulae are obtained:

¥P(y)dy = 2y exp (—y*)dy (4)



