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L a b o r a t o r y  who c o m p u t e d  the  th ree -d imens iona l  
Four ie r  syn theses  and  s t ruc tu re  factors  on 'Deuce ' ,  
t he  N . P . L .  e lectronic  computer .  
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A Unified Program for Phase Determination, Type 1P 
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(Received 7 September 1958) 

The new probabi l i ty  approach, in which the crystal  s t ructure  is fixed and the Miller indices range 
uniformly but  not  independent ly  over the integers, has been developed to yield formulas with 
universal  applicat ion to all the space groups. The formulat ion is general and includes with equivalent  
rigor both the unequal  and equal a tom eases. If a requirement  of rat ional  independence of atomic 
coordinates is fulfilled, the formulas have exact val idi ty.  On the other hand, the formulas should still 
be useful even if the condition of rat ional  independence is only par t ia l ly  fulfilled. In  the application 
to a part icular  space group, use is made of the space group symmetr ies  to obtain relationships among 
the structure factors, by  means of which the general formula is su i tably  speeiMized. 

The present paper is concerned with the space groups comprising type 1P. A detailed procedure 
for phase determinat ion in this  type is described. 

1. I n t r o d u c t i o n  

The concept  of the  jo in t  p r o b a b i l i t y  d i s t r ibu t ion  of 
several  s t ruc tu re  factors,  ob ta ined  by  t r e a t i n g  the  
a tomic  coordinates  as r a n d o m  var iables ,  was intro-  
duced  in our Monograph  I ( H a u p t m a n  & Kar le ,  1953) 
for the  purpose  of de t e rmin ing  phase  d i rec t ly  f rom the  
observed X - r a y  intensi t ies .  I n d e p e n d e n t l y ,  Ki ta igo-  
rodsky  (1954), der ived  the  jo in t  p r o b a b i l i t y  d is t r ibu-  
t ion  for th ree  s t ruc tu re  fac tors  which cons t i t u t ed  a 

study of the Nayre relation (1952) from the probability 
po in t  of view. The  resul ts  ob ta ined  from these  jo in t  
p r o b a b i l i t y  d i s t r ibu t ions  were conf i rmed b y  B e r t a u t  
(1955) and  K lug  (1958) who employed  a l t e rna t i ve  
m a n i p u l a t i v e  t echn iques  which  were however  ma the -  
m a t i c a l l y  equ iva l en t  to the  fo rmula t ion  in Monograph  
I (1953).* I t  is to be emphas ized  t h a t  all these  dis t r ibu-  

* In his paper, Klug (1958) summarizes the theory and 
attempts to evaluate the status of probability methods based 
on atomic coordinates as random variables. Klug reiterates 
limitations stated by others in the past and offers, as new 
evidence, measures of statistical significance derived h'om the 

t ions  were ob t a ined  on the  basis t h a t  h is f ixed a n d  
the  a tomic  coordina tes  r ange  u n i f o r m l y  and  indepen-  
d e n t l y  t h r o u g h o u t  the  a s y m m e t r i c  un i t .  This  is in 
m a r k e d  con t ras t  to our  more  recen t  work (1958) 
which t r ea t s  the  c rys ta l  s t ruc tu re  as f ixed and  p e r m i t s  
the  indices to range  un i formly ,  b u t  no t  i n d e p e n d e n t l y ,  
t h r o u g h o u t  reciprocal  space. I n  th is  way ,  cons ide rab ly  
improved  formulas  h a v e  been obta ined .  

. . . . . . . . . . . . . .  

variances of individual contributors to phase determining 
formulas. However in a previous paper by us (1956), of which 
Klug is apparently unaware, measures of statistical significance 
based on the appropriate variances had already been derived 
and their application was discussed. 

The method of Monograph I utilizes the unusually large 
E values and their interactions in several phase determining 
formulas to build an internally consistent set of signs. Thus 
it should be clear that more is required in a theoretical evalua- 
tion than a knowledge of the variance of single terms in 
individual formulas and the number and quality of the data. 
Quite fortunately, phase determining theories can be readily 
confronted by experiment and it is our opinion that the final 
judgment regarding the applicability of a method is most 
propitiously made in the laboratory. 
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The joint probability distributions, based on the 
atomic coordinates as random variables, lead to for- 
mulas having certain limitations. In general, they have 
probable, rather than exact, validity. In addition, 
although formulas for all the centrosymmetric space 
groups are readily obtained, they often assume dif- 
ferent forms for the various space groups. Hence it is 
difficult to adapt the procedure for use with automatic 
computing machinery. A major defect, however, of 
these probability distributions is that, in general, they 
do not lead to phase determining formulas in the non- 
centrosymmetric space groups. 

In contrast to the procedures described in Mono- 
graph I (1953), it would appear that  an ideal program 
for phase determination should embody the following 
criteria: (a) A unified program valid not only for all 
the space groups, non-centrosymmetric as well as 
centrosymmetric, but also readily adapted to modern 
computing techniques. (b) A uniform treatment re- 
gardless of whether the crystal contains atoms of the 
same or different atomic numbers. (c) Explicit for- 
mulas having exact validity. 

I t  was with the intention to fulfill more nearly the 
above criteria that we derived improved formulas for 
the case of equal atoms in space groups P i  and P1 
by algebraic methods (1957). The algebraic methods 
lead to essentially the same formulas for all the space 
groups. By means of an analysis related to the super- 
position of Patterson maps, Vaughan (1958) indepen- 
dently derived asymptotic formulas which are ap- 
proximately equivalent to the algebraically exact ones 
for large unit cells. 

The results obtained by algebraic methods were 
soon superseded by us (1958) by means of a new 
development of the concept of the joint probability 
distribution. This consisted in the application of the 
general formulation of Monograph I (1953) to obtain 
joint probability distributions based on the assump- 
tion that  the crystal structure is fixed and the re- 
ciprocal vectors are randomly but not independently 
distributed variables. The earlier distributions used in 
Monograph I (1953), lead, in general, to formulas 
having probable validity, whereas the new probability 
approach leads to formulas having exact validity in 
the sense of extremely rapid convergence of an infinite 
series. In fact, the algebraic formulas are special cases 
of those obtained from the latest probability ap- 
proach. 

I t  is our aim to present the details of a routine 
procedure for phase determination in all the space 
groups, utilizing the latest formulas. In this connec- 
tion, it is interesting to note to what extent these 
formulas fulfill the criteria listed above. Criteria (a) 
and (b) concerning a uniform program for treating all 
the space groups, regardless of the chemical content, 
are completely satisfied. So far as criterion (c) is 
concerned, it is also satisfied subject to the require- 
ment that  the atomic coordinates satisfy a condition 

of rational independence (Hauptman & Karle, 1957).* 
Naturally, in practical application, the accuracy of the 
calculations is affected by the number and quality of 
the data. 

Whereas the same type of computation serves 
uniformly for all the space groups, the interpretation 
of the results is space group dependent. In making 
this interpretation, the theory of structure semin- 
variants (Monograph I, 1953 and Hauptman & Karle, 
1959) will be seen to play a central role in that  they 
identify the linear combinations of the phases which 
are directly determined by the observed intensities. 
The interpretation is completed by making use of 
relationships among the structure factors which are 
characteristic of the space group and the chosen func- 
tional form of the structure factor. 

The formulas for phase determination to be pro- 
posed have been proven in detail by us (1958) only 
for space groups P1 and P1 for the equal atom case. 
We have since extended the results to include all the 
space groups (non-centrosymmetric as well as centro- 
symmetric) and have generalized them to include the 
case of unequal atoms. Since the derivation of these 
extensions follows the same lines as that  previous]y 
given by us (1958) and is extremely tedious, we omit 
the proofs for the present. I t  is found that the formulas 
always yield the phases and magnitudes for what may 
be called the 'squared structure', i.e. the structure 
isomorphous to the structure of interest with the 
weights of the atomic scattering factors proportional 
to the squares of the weights of those of the original 
structure. Thus, one obtains directly the squared 
structure from which the true structure may be in- 
ferred. Clearly, the squared structure and the true 
structure coincide for the case of equal atoms. 

2. N o t a t i o n  

We define the 'quasi-normalized structure factor' eh 
by means oft 

1 
eh -- _]/2 ~ f j h  exp (2:zih.rj) , (2.1) 

0 2 j =  

8h = lShl exp ( i (ph)  , (2"2) 

where N is the number of atoms in the unit cell, 
f/h iS the atomic scattering factor of the j th  atom, 
rj is the position vector of the j th  atom and 

N 

an = ZfTh .  (2"3) 
j = l  

The quasi-normalized structure factor, s, is to be 
. . . . .  

* For  a discussion of ra t iona l  dependence  and  its effect  
on phase  de te rmin ing  formulas  see 'Ra t iona l  Dependence  and  
the Denorma l i za t ion  of S t ruc t u r e  Fac to r s  for Phase  Deter -  
mina t ion '  by  H.  H a u p t m a n  and  J .  Kar le ,  Ac ta  Cryst .  (to 
be published).  

t The  symbol  s should  be replaced  by  the  capi ta l  l e t te r  
o z t h r o u g h o u t  the  t ex t .  
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dist inguished from the normalized structure factor, E 
(Karle & H a u p t m a n ,  1956, equat ion (3.12)), al though 
for general  reflections the two coincide. The magni- 
tudes of the Sh are assumed to be known from ex- 
per iment  while their  phases ~On coincide with those of 
the corresponding structure factors Fh. Whereas,  the 
normalized structure factors, E, were well adapted to 
the  earlier probabi l i ty  methods (Monograph I, 1953), 
i t  will be seen tha t  the quasi-normalized structure 
factors e are better  adapted  to the newer methods. 

The quasi-normalized structure factor eL for the 
squared structure (cf. § l) is given by 

1 
sL = IsLI exp (i~h) = ~I/-- ~ 

.V 
.~'f~h exp (2zdh.r j )  , (2.4) 

]=1 

where ~0L is the phase of the structure factor Sh. For 
the fourth power structure,  we have 

,,, . ,,, 1 
= - -  

8 h  = IsL"l exp ( ~ h )  a~/2 
N 

.4 J;h exp (27~ih.r;), (2.5) 
]=1 

t t t  t t t  

where ¢Ph is the phase of the structure factor Sh • 
We define now some quanti t ies  which occur in the 

phase determining formulas:  

and 

~ep = <[SkiP>k, (2"6) 

2vh = lehl~--,Uv, (2"7) 

M, / l ev i ' -  1 \  
= \ l o g  l ek l /k  ' (2"8) 

] S h l t - - I  
A t h  -- l o g ~ h l  - M "  (2 .9)  

where tl~e expression ( le l"- l ) / log lel is to be replaced 
by t when lel = 1. F ina l ly  C,~(t) is defined by 

C,,(t) = (2~)1/4 oX"2(~"<)/2F -+ dx (2.10) 

and is given in Table 1, where the entries, calculatcd 
by numerical  integration,  e, re in error by not more 
than  two units  in the third significant figure. The 
symbol  /I  in (2.10) represents the G a m m a  function. 

Table 1 
T h e  va lues  of 

Cn(t) - 1 I t { x + l  I (2~)1/2 o xn2(x+l ) /2F  \ 2 ] dx  

for  v a r i o u s  v a l u e s  of t a n d  n 

t n - = 0  n = l  n = 2  
0 0.000 0.000 0.000 
1 0.847 0.408 0.268 
2 1.72 1-74 2.36 
3 2.98 4.92 10.55 
4 5.17 12.73 38.50 
5 9.61 32.99 131.3 
6 19.6 88.6 443 

?t --  3 
0.000 
0.200 
3.59 

24.93 
125.3 
552.1 

2296 

3. P h a s e  d e t e r m i n i n g  f o r m u l a s  

3.1. Basic formulas 
4zta~ 

B2, o: Sh 2 = 1 + -  

(2vkXq~+k)>k+R2, 0. (3"1"1) 

B3,o" GsLsi.+~ 
(2:rd:) z12 a23 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

< 2 p k  2q(hl  + k)2r(h 1 + h 2 + k ) > k  

- 2  o~--/~ + - -  ( G G ' +  sL~sL'o.' + ~L~+h~SL'l'-, h~)+ G,o-  
~4 (3"1"2) 

3"2. Integrated formulas 

I.zo: e~; ~ = 1 +~[-4<AtkAt(n+k)}k+R~,o. (3.2.1) 

, , , (7 a < A t k A t ( h l + k ) d t ( h x 4 h z + k ) >  k 13,0  : e h l S h 2 e h l + l l 2  = C 3 ( t )  ~4"~3/2 

(76 O'~/2 
- 2  ~ , ,  + - -  (G~L'? + G G ' +  G . h , G + ~ 0  +R~,o. 

~'4 a4 (3"2"2) 

In  these formulas, p, q, r and t are restricted to be 
positive. Ordinari ly they are given values in the range 
2-4. A further discussion of this mat te r  is found in § 5. 

The remainder  terms are given in the appendix  
§ 6. Equat ion (3.1.1) or (3.2-1) serves to determine 
the magni tudes  of the structure factors [shl corre- 
sponding to the squared structure. By means of equa- 
t ion (3.1.2) or (3.2-2), the phases of these structure 

t 
factors ~0, m a y  be determined.  In  the next  section we 
describe in detail  how these equations are to be used 
for the various space groups included in type 1P, the 
Conventionally pr imit ive  space groups in the triclinic, 
monoclinic and orthorhombic systems (Table l ,  p. 14, 
Monograph I, 1953). 

I t  should be clear tha t  al though tim emplaasis in 
this paper  is on a unified program for phase determina-  
tion, several of the simpler phase determining formulas 
which have already appeared in the l i terature m a y  
serve to supplement  the present method. 

4. P h a s e  d e t e r m i n i n g  p r o c e d u r e  

I t  is assumed tha t  the ]eh[ have been calculated from 
the observed intensities. From these, the [eLI are 
obtained from (3.1.1) or (3.2.1). In  fact the [sLF so 
computed m a y  be made to cover a. range of reflections 
extending beyond tha t  of the original set of observa- 
tions. We are here concerned only with the larger 
[Sh] and it is the phases of these whose values are to 
be determined.  

In  the application of (3.1.2) or (3.2.2), the values 
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of some [sh"l m a y  be required. These m a y  be obtained 
from (3.1.1) or (3.2.1) in which e is replaced by  e' 
and e' by  e ' " .  

Although the same phase determining formulas 
(3-1.2) or (3-2.2) are used for all the space groups, 
full  use is made of the advantages  accruing from the 
space group symmetries .  This arises from the fact tha t  
special choices of the indices h~ and h~., peculiar to 
the space group, permit  the calculation of special 
phases. The choices of indices are based upon relations 
among the structure factors which depend upon the 
par t icular  space group and, in general, on the choice 
of funct ional  form for the structure factor. Space 
groups of type 1P, have, of course, only one funct ional  
form for the structure factor (Monograph I, 1953). 
In  the phase determining procedures to follow, it will 
be seen tha t  the first steps concern the application of 
(3.1.2) or (3.2.2) with choices of indices which take 
advantage  of the space group symmetry .  The final 
step is in the form of a general application which is 
the same for all the space groups. 

The specification of the origin is carried out in 
conformance with the seminvar ian t  theory developed 
in Monograph I (19,53). Origin specification in all space 
groups of a given type is the same. Thus,_ the method 
of origin specification for space group P1 serves as a 
model for the remaining ones of type 1P. 

4.1 .  T r i c l i n i c  s y s t e m  

In  the triclinic system we are concerned with space 
group P1. The only special choice for h 1 and h~ arises 
for the case tha t  h~ = h 2. Since equations (3.1.2) and 
(3.2.2) then  give the values of e~z~S~h~, in practice 
only those values of ha are chosen which give the 
largest values for [ehe~e£h~l. In  this way the phases of 
some of the largest e~h m a y  be found. I t  is conceivable 
tha t  in an unfavorable  ease no large values are ob- 
tained for ]eh~e2~l. In  this case we would omit this 
special calculation and go on to the next  step. 

For the purpose of specifying the origin, a l inearly 
semi- independent  triple of phases, ~0~, i = 1, 2, 3, 
having large corresponding le~l is chosen. The values 
of these ~ i  are then specified arbi t rar i ly  (i.e. 0 or ~), 
thus fixing the origin. Systematic  use of equation 
(3.1.2) or (3-2.2) then permits  the determinat ion of 
the phases q)h~ of the remaining e~i of interest, i.e. 
the larger ones. Of course, as the calculation proceeds, 
use is made of previously determined or specified 
phases. Examina t ion  shows tha t  contained within this 
procedure is the possibili ty of a great m a n y  different 
ways for determining the same phase. This property 
m a y  be expressed in terms of an ident i ty  involving 
the phases, as previously described (Haup tman  & 
Karle,  1958). 

4.2. M o n o c l i n i c  s y s t e m  

There are two special choices of h~ and h e charac- 
teristic of the space groups in the monoclinic system, 

in addit ion to h a = h e which is val id for P1. These 
are shown in the first two rows of Table 2. By  means  

Table 2 
t 2 t The coefficients of elalSla given by the left sides of (3.1.2) or 

(3.2.2) for selected values of h I and h 2 (shown in the first 
two rows), and for each of the four primitive centrosymmetric 
space groups of the monoclinic system. From these, el~ may 

be found, where h = h l + h  2 

h 1 hlcl hkl 
h 2 hkl hkl 
h ---- h l + h  2 02k0 2h02/ 

P 2 / m  + 1 + 1 
P2x/m ( -- 1)1; ( -- 1)k 
P2/c  ( -- 1 )l ( -- 1 )l 
P21/c (-- l ) k +  / ( - -  1)k ÷ l 

of the first of these, h I = (h, k, l) and h 2 = (h, k,-]), 
equation (3.1.2) or (3.2.2) yields the value of eh~.ze02~0 
mult ipl ied by  the numerical  coefficient given in the 
second column of Table 2. In  this way the value of 
the phase ~02k0 is determined.  Since h and 1 m a y  be 
chosen arbi trar i ly,  q~o.,t,.o m a y  possibly be determined 
in many  ways. Again we note tha t  the computat ions 
are performed only for the larger values of ]e~-leh]. 

The second relat ionship h 1 = (h, k, l) and h e = 
(h, it, 1), leads to the value of the phase q~gh0.~z by means 
of the numbers  listed in the third column of Table 2 
and (3.1.2) or (3.2.2). 

The numbers  listed in columns two and three of 
Table 2 arise from relationships among the structure 
factors which are characteristic of the part icular  space 
group. For example,  in space group P 2 / m ,  s1',1¢t = 
~k7--st',7,q, whereas in space group P 2 1 / m ,  egkl = 
(-- 1)%£9 = (-- 1)%2~a. Thus the subst i tut ion of h I and 
h 2 of Table 2 into (3.1.2) or (3.2.2) yields, for the left 
sides, eh~e~ t imes the coefficients listed in columns 
two and three. 

We proceed by specifying the origin and determining 
the remaining phases of interest  in the same way as 
for P i .  

4.3. O r t h o r h o m b i c  s y s t e m  

The special choices of h 1 and h 2 characterist ic of 
the space groups in the orthorhombic system, in 
addit ion to h 1 = h 2 which is valid for P1, are shown 
in the first two rows of Table 3. By means of these and 
(3.1.2) or (3.2.2), the values of m a n y  of the phases 

t t t t t t 

q~2h00, (P02k0, q%0~.t, q~2h2k0, Cf2h02t and ~o2,~l associated 
with large ]s~] m a y  be found. These choices of hj and 
h 2 arise, as before, as a consequence of the special 
relationships among the structure factors in the 
various space groups, e.g. in P , , , ,  ehla = (- -  1)k~ lSgk~ = 
( 1)l~he~kf (--1)h~keZ- = = -- = hkl ( -  1)h+ke2~ (-- 1)l+he~Z 
= (--1)e+Z~.~,~. Again, the subst i tut ion of hi  and h o of 
Table 3 into (3.1.2) or (3.2.2) yields, for the left sides, 
sh~sn'2, t imes the coefficients listed in the appropriate  
columns of Table 3. 
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Table 3 

The  coef f ic ien ts  of eh~'~ e h' g iven  b y  the  lef t  s ides of (3.1-2) or  (3.2.2) for  se lec ted  va lues  of h 1 and  h~ ( shown in the  f i rs t  t w o  rows) ,  
a n d  for  each  of t he  s ix t een  p r i m i t i v e  c e n t r o s y m m e t r i c  space  g roups  of the  o r t h o r h o m b i c  s y s t e m .  F r o m  these ,  e h m a y  be  found ,  

w h e r e  h = hl-~-h~ 

h 1 

h = h ~ + h ~  

PmT~Trb 

P n n n  
P c c m  
P b a n  
P m m a  
P n n a  
P i n n a  
P c c a  
P b a m  
P c c n  
.Pbcm 
P n n m  
P q rt TtT~ n 

P b c n  
P b c a  
P n m a  

hk l  hk l  hk l  

Kki hkl -h#l 
2h00 02k0 002/ 

+ 1  + 1  + 1  
_ 1)Zz+t ( - -  1) l+h ( - -  1)h+/c  
- -1 )  t ( - -1 )  z + 1  
- -  1)Ic ( - -  1) h ( - -  1) h + k  
- -  1) h + 1 ( - -  1) h 
- -  1 ) k + /  ( - -  1 ) k + / c + l  ( - -  1) h 
+ 1 ( --  1 )l+h ( -- 1 )b~h 
_ 1)z+h ( -  1)~ (_ ~ ) h  

- -  1) h+/c ( - -  1) h+Ic + 1 
- -  1 ) l + h  ( - -  1 )to+/ ( - -  1 )h +/," 
- -  1)/¢ ( - -  l )k:+l ( - -  1 )l 
-- 1)h+/c+Z ( - -  1 )h+,~+l + 1 
- -  1)h  ( - -  1) lc ( - -  1)h+~c 
-- 1) h+~c ( - -  1)t ( - -  1) tt+k+/ 
- -  1 ) h + ~  ( - -  1) /c+/  ( - -  1 ) / + h  
-- l)h+]c+/ ( - -1 )k  ( - -  l)/+h 

hk l  hk l  h id  

hki h]~Z #kz 
2h2kO 2h02/ 02/c2/ 

+ 1  + 1  + 1  
( - -  1 )l, +~ ( --  1 )l+h ( --  1 )k+l 

+ l  ( - -1 ) /  (--1)z 
( - -1 )  h+k ( - -1)h  ( - -  1)1c 
(-1)h +1 (--l)h 
( - -1 )  h ( - -  l)h+k+/ ( - -  1)k+/ 

- -  l ) / + h  ( - -  l ) / + h  + 1 
- -  1) h ( - -  1)/ ( - -  1 ) / + h  
+ 1 ( - -1 )  h+k ( - -  l)h+k 
- -  1)h+~'  ( - -  1) lc+/  ( - -  1 ) / + h  
- -  1 )l ( - -  1 ) /c+l  ( - -  1 )/c 
+ 1  ( - -1 )  h+~:+~ ( - -  1)h+~+t 
- -  1)h+/c  ( - -  1) k ( - -  1) h 
--  1)h+~'+Z (--1)Z ( - -  1)h+lc 
- -  1 ) / + n  ( - -  1 ) k + t  ( - -  1)h+tc 
- -  1 ) l+h  ( - -  1 )~: ( - -  1 )l,+K-+l 

The procedure is completed by  specifying the origin 
and determining the remaining phases of interest  in 
the same way as for P1. 

5. C o n c l u d i n g  r e m a r k s  

The computat ion of the averages in (3.1.1), (3.1.2), 
(3.2.1) and (3.2.2) on an IBM 704 has been pro- 
g rammed b y  Mr Peter  O 'Hara  of the National  Bureau 
of Standards.  Thus, these computat ions are readily 
feasible with modern computing facilities. 

Fur ther  experience in the application of the phase 
determining formulas will indicate what  are the best 
values of p, q, r or t to use. In  effect, there are two 
competing influences affecting the accuracy of the 
calculation. As p, q, r or t increase the variances of 
the averages increase and, in addition, the inaccuracies 
inherent  in the exper imental  da ta  are exaggerated. 
On the other hand,  in compensation for this, the co- 
efficients which mul t ip ly  these averages are found to 
decrease with increasing p, q, r or t. On the basis of 
our l imited experience, values of p, q, r or t in the 
range of 2 to 4 appear to be most suitable. We prefer 
to use the integrated formulas (~.2.1) and (3.2.2), 
especially since the correction terms listed in § 6 are 
generally quite small. 

A few words are in order concerning space group 
extinctions. If  an unl imi ted set of da ta  were available,  
there would be no problem concerning the inclusion, 
in the computat ions of the averages, of those eh which 
are zero because of space group extinctions, since the 
average would not thereby be altered. However, with 
l imited data,  this question assumes some significance 
and is related to the fact tha t  certain of the one and 

two dimensional  reflections assume exaggerated im- 
portance when using the e values instead of the E. 
In  our opinion, coupled with the use of the s in 
preference to the E, the Sh which are zero because of 
space group extinction should be included in the 
calculation of the averages. Of course, accidental zeros 
are of necessity included in the computations.  

As a result of the calculations, the values of the  
larger l ehl and the corresponding phases ~ are found. 
In  view of our discussion in a previous paper  (Karle, 
Haup tman ,  Karle  & Wing, 1958), of the use of s 
maps, we recommend tha t  the next  step be the cal- 
culation of an e map in which it is assumed tha t  
q9 h = ~ .  For centrosymmetr ic  structures and for 
large [shl and le;,], this lat ter  assumption will rarely, 
if ever, be violated. An e' map, giving the squared 
structure, m a y  be helpful in interpret ing the s map  
since it facilitates the identif ication of different kinds 
of atoms. I t  should be noted in passing tha t  a map  
computed with leVI 2 may  also prove to be a useful 
aid since it exaggerates the Pat terson peaks arising 
from the heaviest  atoms. 

6. A p p e n d i x  

The correction terms for the formulas listed in § 3 
are given here. With  the possible exception of the first 
term of (6.1), (6.2), (6.5) and (6.6), and when h 1 = h2, 
the first terms of (6.3) and (6.7), these corrections are 
quite small.  They all decrease a.s N increases. Never- 
theless these terms are included here for the sake of 
completeness, and, in any given case, the invest igator  
can evaluate their  effect in practical application. 

We define: 



R(O) 
1 2,0 = 

J .  K A R L E  A N D  H.  H A U P T M A N  

R(O) 
2 2 ,0  = - - - -  

(1~/2 ,,, (16 ( p + q - 4 )  
G4 82h (12 (14 

(14 
32 (1~ (100 - 42p - 42q + 9pq + 4p 2 + 4q 2 ) 

(14 
8(1--~ ( 3 2 - 1 4 p -  14q + 4pq + p e + q2) s~e 

o-sU 2 
(12(1~/---- ~ (p+q--4)eh  Sh" 

(1a _ 2 ) ( q _ 2 ) ~ +  3 ~  ~ 12(1~ ( p ( p - 2 ) ( q - 2 ) + . . . ,  
(6.1) 

(6.2) 

R(O) 
1 3 ,0  =- 

+ 

and  

R(O) 
2 3,0  ~ - - - -  

t t t  , , ,  t i t  (1~/2 (s~.~oo + So, so+ eoo2~ ) 
(14 

2(11/~ 

(14 
4(1--~ ( ( p - 2 ) ( p - 4 ) +  (q--2)(q--4))eh ~ 

2(16 (p+q- -4)  
(12 (14 

(14 
16-~'.~ ( ( p - 2 ) ( q - 2 ) + 2 ( p - 2 ) ( p - 4 )  

2 ( q - 2 ) ( q - 4 ) )  + . . .  , 

(6.3) 

(1~/2 
( ~hl ~h'l'+ 2h2 ÷ ~h2 ~2£11 +h2 ÷ ~hl+h2 ~hi'--h2) 

5(11/~ 
- - - ( p + q + r - 6 )  

16(12 

((P+q-4)ehz~ + (q÷r--4)She2 

(p+r - -4 )  'e ~ h l + h 2 )  

0"I/2 '2 '2 

'2 '2 ( r -  2) eh2 e h l + h  2 ÷ k ( P  ÷ q ÷ r - -  6)) + . . .  , 

al/2 ( ( r -  2) e~"~ + ( p - 2 )  s~2~ + ( q -  2) e~,+h~) 
8(12 

(1l/2 , , ,  , , ,  , , ,  

- -  - -  e h l  ( eh l+2h2 ,  kl, 11 + 8hl ,  kl+2k2,11 "~- eh l ,  k l , /1+2/2)  
(7 4 

(11/2 , , ,  , , ,  

~h2 (~ih'l÷h2, k2,/2 "~- ~h2, 2kl+k2, 12 ÷ ~h2, k2, 2'1+'2) 
(14 

( 1 l ] 2  , ( ~ i ' 1 2 h 2 ,  k l ÷ k 2 , 1 1 + 1 2  8hl+h2 
(I 4 
t i t  t i t  

+e~+~,  ~_~, ~+~ + eh~+~,~, ~+~, h-~) + ' "  , (6.4) 

Nex t  we define (where C~(t)) is replaced by C~: 
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(1~/2 2a 6 
aR~X,)o = ~ e~' + ~ (2C~-C2) 

if4 
32c~ ~ (lOOC~- s4v, c.  + 9el + sc~v,) 

0"4 '2 
+ ~i~_~. (16C~ - 14C~C 2 + 2C~ + CIC3) e h 

4Cl a~ 

C~ ~ . a l / ~  (2C~- C2)~ ~" 

(14 ( 2 C 1  2 ,4 (14 -C~.) eh + (2C~-C~) 2 
12 C~ a~ o--h-F~-_e 32C1 a.2 

÷ . . . ,  (6.5) 

Ru ) (1~/~ 
, ~ , o  = - - -  (~;; , 'o , ,  + ~ o l ; o  + ~ ' o , i ,  ) 

(14 

4J--~2- (2c,-c2) . . . .  + C~ a2 a 1/2 eh eh 

°"4 ,2 4a6 
2Caa ~ (8C1--6C2+C3)eh C~aeaa 

(7 4 
+ --~--~_~ ((2C~ - C2) 2 + 4C, ( 8C, - 6C 2 + Ca) ) 

16CI~; 
÷ . . . ,  (6.6) 

R (1) ~/2 

15a~/~ 
+ ~-6-~,-~ (2C~-C2) 

~I/2 (2C~- ,~ ,.,, ,2 
2C~ a2 

a~/~ (2C~-C2) '~ '~ '2 ':' ÷ ~ - 1 - ~ 2  (Eh l  Eh2 ÷ Ehl  E h l + h 2  

'2 '2 3 +eh~eh,+h~+~)+... , (6"7) 

(2C1 - C2) 

R(1)  _ (11/2 
~ 3, o 8C~a2 

(1112 

(7 4 

(1~12 

(7 4 

(1~12 8 

(14 

(2CI _ '2 '2 '2 __ - - - -  C 2 )  ( e h l  -~- ~h2 ÷ ~ h l + h 2 )  

i t ,  , , ,  

, v t t  t i t  I , , ,  

- -  - -  8h2 (~2hl+h2,  k2,12 -~- 8h2, 2kl+k2,12-1-8h2 , k2, 2/1+/2) 

, t t t  

- -  - -  ~hl - ] -h2(ehl - -h2 ,  kl+k2.11÷12 

;,v e t t ,  
+ ehl+h~, A'l-k2, Zl+Z~ ~ ehl+h~, la+k~, a--12) + . . . .  (6"8) 

For  the conventionally primit ive space groups of the  
triclinic and monoclinic systems, 

= R ( j ) + . . . "  i 2, 3" j 0 ,1  (6.9) R ~ ) o  i i , o  , = , = • 

For the conventionally pr imit ive space groups of the 
or thorhombic  system, 

~ ( o ±  ~(7~± • i 2, 3" j 0 ,1  (6.10) ~!)o = l = o i ,  o ~ 2 ~ , i ,  o T . . . ,  = , = . 
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The  r e m a i n d e r  t e rms  in t he  basic formulas  arc 
especial ly  s imple  for t he  special  case, p - - q -  r =2 .  
For  this  case, t he  formulas  reduce  to those  ob ta inab le  
by  t he  algebraic  m e t h o d s  proposed  by  us (1957). 
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The  problem of the distribution of intensity in the re- 
sul tant  obtained by compounding n vibrations of equal 
ampli tude,  but  of random phase, was considered by 
Lord Rayleigh (1880) (see also Ramachandran ,  1943). 
He considered two cases--one in which the phases are 
assumed to have only the values 0 or ~, and the other, 
the more general case, in which the phases are arbitrary. 
I t  will be readily recognized tha t  these two correspond 
to the problem of calculating the distribution of X-ray 
intensities for a centrosymmetr ic  and a non-centro- 
symmetr ic  crystal structure, in which all the atoms are 
alike. The formulae obtained by Lord Rayleigh may  be 
stated in the following form: 

lvP(z)dz = exp (--z)dz (1) 

1 
cP(z)dz - -  (2nz)½ exp (--z/2)dz (2) 

where z = I / (1 )  and P(z)dz represents the probabil i ty 
tha t  the  fraction I / ( I )  occurs between z and z+dz. The 
subscripts N and C refer to non-centrosymmetr ic  and 
centrosymmetr ic  structures. 

These formulae have also been derived by Wilson 
(1949) and on their  basis Howells, Phillips & Rogers 
(1950) have suggested a test for distinguishing between 
eentrosymmetr ic  and non-centrosburm~etric structures. 
However,  they  have used the fraction 

N(z) ---- P(z)dz (3) 
o 

for this purpose. The N(z) curves, as is characteristic of 
all cumulat ive distr ibution functions, start  at  the origin 
and are more or less similar in their  general shape for 
both types of structures. Consequently a critical distinc- 

November 1958) 

tion between the two is not  always possible and, a l though 
success has been reported in various eases using this 
test, it has led to negative results (Whittaker,  1953; 
Eriks & McGillavry, 1954; Paton & MacDonald, 1957) 
and even false results in a few cases (e.g., see Rober tson 
& Shearer, 1956; Robertson, Shearer, Sim & Watson,  
1958). 

However,  if we modify the original probabili ty distri- 
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Fig. 1. Theoretical curves of P(y) against y for centro- 
symmetric (C) and non-centrosymmetric (N) distributions. 

bution functions such tha t  the argument  is y = l/z and 
not z, then the following formulae are obtained:  

~,P(y)dy ---- 2y exp (--y~-)dy (4) 


